书城科普读物电磁(科学探究丛书)
16200900000002

第2章 电磁学概述(2)

由于当时的能量守恒定律尚未确立,验电力的概念是含混的,直到1848年基尔霍夫从能量的角度考查,才澄清了电位差、电动势、电场强度等概念,使得欧姆理论与静电学概念协调起来。在此基础上,基尔霍夫解决了分支电路问题。

杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象。紧接着他做了许多实验确定电磁感应的规律,他发现当闭合线圈中的磁通量发生变化时,线圈中就产生感应电动势,感应电动势的大小取决于磁通量随时间的变化率。后来,楞茨于1834年给出感应电流方向的描述,而诺埃曼概括了他们的结果给出感应电动势的数学公式。

法拉第在电磁感应的基础上制出了第一台发电机。此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。

电磁感应的发现为能源的开发和广泛利用开创了崭新的前景。1866年西门子发明了可供实用的自激发电机;19世纪末实现了电能的远距离输送;电动机在生产和交通运输中得到广泛使用,从而极大地改变了工业生产的面貌。

对于电磁现象的广泛研究使法拉第逐渐形成了他特有的“场”的观念。他认为:力线是物质的,它弥漫在全部空间,并把异号电荷和相异磁板分别连结起来;电力和磁力不是通过空虚空间的超距作用,而是通过电力线和磁力线来传递的,它们是认识电磁现象必不可少的组成部分,甚至它们比产生或“汇集”力线的“源”更富有研究的价值。

法拉第的丰硕的实验研究成果以及他的新颖的场的观念,为电磁现象的统一理论准备了条件。诺埃曼、韦伯等物理学家对电磁现象的认识曾有过不少重要贡献,但他们从超距作用观点出发,概括库仑以来已有的全部电学知识,在建立统一理论方面并未取得成功。这一工作在19世纪60年代由卓越的英国物理学家麦克斯韦完成。

麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。

麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。

1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。从此麦克斯韦的理论逐渐为人们所接受。

麦克斯韦电磁理论通过赫兹电磁波实验的证实,开辟了一个全新的领域——电磁波的应用和研究。1895年,俄国的波波夫和意大利的马可尼分别实现了无线电信号的传送。后来马可尼将赫兹的振子改进为竖直的天线;德国的布劳恩进一步将发射器分为两个振藕线路,为扩大信号传递范围创造了条件。1901年马可尼第一次建立了横跨大西洋的无线电联系。电子管的发明及其在线路中的应用,使得电磁波的发射和接收都成为易事,推动了无线电技术的发展,极大地改变了人类的生活。

1896年洛伦兹提出的电子论,将麦克斯韦方程组应用到微观领域,并把物质的电磁性质归结为原子中电子的效应。这样不仅可以解释物质的极化、磁化、导电等现象以及物质对光的吸收、散射和色散现象;而且还成功地说明了关于光谱在磁场中分裂的正常塞曼效应;此外,洛伦兹还根据电子论导出了关于运动介质中的光速公式,把麦克斯韦理论向前推进了一步。

在法拉第、麦克斯韦和洛伦兹的理论体系中,假定了有一种特殊媒质“以太”存在,它是电磁波的荷载者,只有在以太参照系中,真空中光速才严格地与方向无关,麦克斯韦方程组和洛伦兹力公式也只在以太参照系中才严格成立。这意味着电磁规律不符合相对性原理。

关于这方面问题的进一步研究,导致了爱因斯坦在1905年建立了狭义相对论,它改变了原来的观点,认定狭义相对论是物理学的一个基本原理,它否定了以太参照系的存在并修改了惯性参照系之间的时空变换关系,使得麦克斯韦方程组和洛伦兹力公式有可能在所有惯性参照系中都成立。狭义相对论的建立不仅发展了电磁理论,并且对以后理论物理的发展具有巨大的作用。

电磁学的基本内容

电磁学研究的内容主要包括静电、静磁、电磁场、电路、电磁效应和电磁测量。

静电学是研究静止电荷产生电场及电场对电荷作用规律的学科。电荷只有两种,称为正电和负电。同种电荷相互排斥,异种电荷相互吸引。电荷遵从电荷守恒定律。电荷可以从一个物体转移到另一个物体,任何物理过程中电荷的代数和保持不变。所谓带电,不过是正负电荷的分离或转移;所谓电荷消失,不过是正负电荷的中和。

静止电荷之间相互作用力符合库仑定律:在真空中两个静止点电荷之间作用力的大小与它们的乘积成正比,与它们之间的距离的平方成反比;作用力的方向沿着它们之间的联线,同号电荷相斥,异号电荷相吸。

电荷之间相互作用力是通过电荷产生的电场相互作用的。电荷产生的电场用电场强度(简称场强)来描述。空间某一点的电场强度用正的单位试探电荷在该点所受的电场力来定义,电场强度遵从场强叠加原理。

通常的物质,按其导电性能的不同可分两种情况:导体和绝缘体。导体体内存在可运动的自由电荷;绝缘体又称为电介质,体内只有束缚电荷。

在电场的作用下,导体内的自由电荷将产生移动。当导体的成分和温度均匀时,达到静电平衡的条件是导体内部的电场强度处处等于零。根据这一条件,可导出导体静电平衡的若干性质。

静磁学是研究电流稳恒时产生磁场以及磁场对电流作用力的学科。

电荷的定向流动形成电流。电流之间存在磁的相互作用,这种磁相互作用是通过磁场传递的,即电流在其周围的空间产生磁场,磁场对放置其中的电流施以作用力。电流产生的磁场用磁感应强度描述。

电磁场是研究随时间变化下的电磁现象和规律的学科。

当穿过闭台导体线圈的磁通量发生变化时,线圈上产生感应电流。感应电流的方向可由楞茨定律确定。闭合线圈中的感应电流是感应电动势推动的结果,感应电动势遵从法拉第定律:闭台线圈上的感应电动势的大小总是与穿过线圈的磁通量的时间变化率成正比。

麦克斯韦方程组描述了电磁场普遍遵从的规律。它同物质的介质方程、洛仑兹力公式以及电荷守恒定律结合起来,原则上可以解决各种宏观电动力学问题。

根据麦克斯韦方程组导出的一个重要结果是存在电磁波,变化的电磁场以电磁波的形式传播,电磁波在真空中的传播速度等于光速。这也说明光也是电磁波的一种,因此光的波动理论纳入了电磁理论的范畴。

电路包括直流电路和交流电路的研究,是电学的组成部分。直流电路研究电流稳恒条件下的电路定律和性质;交流电路研究电流周期性变化条件下的电路定律和性质。

直流电路由导体(或导线)连结而成,导体有一定的电阻。稳恒条件下电流不随时间变化,电场亦不随时间变化。

根据稳恒时电场的性质、导电基本规律和电动势概念,可导出直流电路的各个实用定律:欧姆定律、基尔霍夫电路定律,以及一些解决复杂电路的有效而简便的定理:等效电源定理、叠加定理、倒易定理、对偶定理等,这些实用定律和定理构成电路计算的理论基础。

交流电路比直流电路复杂得多,电流随时间的变化引起空间电场和磁场的变化,因此存在电磁感应和位移电流,存在电磁波。

物质中的电效应是电学与其他物理学科(甚至非物理的学科)之间联系的纽带。物质中的电效应种类繁多,有许多已成为或正逐渐发展为专门的研究领域。比如:

电致伸缩、压电效应(机械压力在电介质晶体上产生的电性和电极性)和逆压电效应、塞贝克效应、珀耳帖效应(两种不同金属或半导体接头处,当电流沿某个方向通过时放出热量,而电流反向时则吸收热量)、汤姆孙效应(一金属导体或半导体中维持温度梯度,当电流沿某方向通过时放出热量,而电流反向时则吸收热量)、热敏电阻(半导体材料中电阻随温度灵敏变化)、光敏电阻(半导体材料中电阻随光照灵敏变化)、光生伏打效应(半导体材料因光照产生电位差),等等。

对于各种电效应的研究有助于了解物质的结构以及物质中发生的基本过程,此外在技术上,它们也是实现能量转换和非电量电测法的基础。

电磁测量也是电学的组成部分。测量技术的发展与学科的理论发展有着密切的联系,理论的发展推动了测量技术的改进;测量技术的改善在新的基础上验证理论,并促成新理论的发现。

电磁测量包括所有电磁学量的测量,以及有关的其他量(交流电的频率、相角等)的测量。利用电磁学原理已经设计制作出各种专用仪表(安培计、伏特计、欧姆计、磁场计等)和测量电路,它们可满足对各种电磁学量的测量。

电磁测量的另一个重要的方面是非电量(长度、速度、形变、力、温度、光强、成分等)的电测量。它的主要原理是利用电磁量与非电量相互联系的某种效应,将非电量的测量转换为电磁量的测量。由于电测量有一系列优点:准确度高、量程宽、惯量小、操作简便,并可远距离遥测和实现测量技术自动化,非电量的电测量正在不断发展。

电学作为经典物理学的一个分支,就其基本原理而言,已发展得相当完善,它可用来说明宏观领域内的各种电磁现象。

20世纪,随着原子物理学、原子核物理学和粒子物理学的发展,人类的认识深入到微观领域,在带电粒子与电磁场的相互作用问题上,经典电磁理论遇到困难。虽然经典理论曾给出一些有用的结果,但是许多现象都是经典理论不能说明的。经典理论的局限性在于对带电粒子的描述忽略了其波动性方面,而对于电磁波的描述又忽略了其粒子性方面。

按照量子物理的观点,无论是物质粒子或电磁场都既有粒子性,又具有波动性。在微观物理研究的推动下,经典电磁理论发展为量子电磁理论。