书城教材教辅新课改·高一化学备课素材
16780900000048

第48章 碳族元素无机非金属材料(3)

唐三彩

釉陶发展到汉代有了极大的进步。一方面是出现了低温釉,即以黄丹或铅粉代替石灰石作为陶釉中的助熔剂;一方面有意识地往釉料中加入少量含铜矿物或含铁矿物,前者便使釉层呈深绿色,后者使釉层呈深黄色或棕黄色。这是制作釉器使用呈色剂的开始。唐三彩的出现是釉陶作品发展的高峰,它是一种施以多种釉色的陶器美术工艺品,以白色黏土为胎,彩绘釉色以白、绿、黄三色为基色,间有蓝、紫、棕褐、黑各色。唐三彩使用低温铅釉,采用二次烧成工艺,釉层约是在800℃的温度下烧成。绿釉仍用氧化铜类矿物(孔雀石、白青、曾青)着色;黄色和棕褐色釉用赭石着色;蓝色釉用含钴氧化锰矿石着色;黑色釉用铁锰矿石着色;白色釉是以无色透明釉覆盖在化妆白土上而成。

紫砂陶

宋代以后,宜兴(今属江苏省)的紫砂无釉细陶制品有如异军突起,尤其是紫砂茶具,誉满中外,明代达到极盛时期。由于紫砂陶器往往将中国传统的绘画、书法、诗词、篆刻、雕塑诸般艺术荟萃于一体,为历代文人所赞赏。紫砂陶的原料是宜兴所产的紫砂泥,是一种天然的五色陶土,深藏于岩石层下,具有很强的可塑性,属高岭土-石英-云母类型。因含三氧化二铁量特别高(7%~8%),所以烧成后呈棕紫色。烧成温度在1100~1200℃,采用氧化气氛。烧成后的成品吸水率小于2%,说明它的气孔率介于一般陶器与瓷器之间。

原始瓷

中国瓷器是在烧制硬陶、白陶和石灰釉陶的经验基础上发展起来的。早在殷周时期,在釉陶出现后不久就出现了青釉器,原料成分接近于瓷土,胎质灰白;烧成温度一般高达1100℃以上,胎体基本烧结,釉为高温石灰釉,与胎体结合牢固。这种青釉器已符合瓷器的基本要求,只是胎质的白度和烧结程度还不够,所以现在称它为原始瓷。及至春秋时期,原始瓷器质量有了明显提高。从出土情况看,那时江南地区是原始瓷器的主要产区,这可能与该地区盛产瓷土有关。

青瓷

原始瓷发展到东汉,演变成为真正的瓷。这种早期瓷器的釉层,靠釉料中固有的三氧化二铁自然呈色,所以多呈黄褐色。若焙烧时还原气氛掌握得好,则釉呈青色,所以称青瓷。三国、南北朝时期的青瓷器,胎体中酸性氧化物含量进一步增高,烧成温度达1200℃,釉色青绿纯正,说明当时已能较熟练地掌握焙烧气氛和釉料配方。1600年前的西晋青瓷神兽尊。说明中国制瓷器史的悠久

唐代瓷器

唐代瓷器以南方越窑的青瓷和北方邢窑、巩窑及四川大邑窑的白瓷为代表。中、晚唐时,越窑青瓷有了明显提高,原料加工和胎体制作都已相当精细,瓷土经过仔细粉碎和淘洗,坯泥在成型前经过反复揉练,所以瓷胎细腻质密,不见分层现象,气孔也少。釉料处理和施釉技术也有很大进步,釉层均匀、晶莹润泽,开裂成纹和剥釉现象大为减少,青色纯正,滋润而不透明。唐代白瓷釉含铁量已极少,洁白似玉。长沙还出现了以铁、铜为呈色剂的黄褐色和绿色釉下彩所装饰的新品种,安徽、山东、河南等地则出现了以铁、锰为呈色剂的黑釉瓷器。

五代瓷器

五代时江西浮梁县昌南镇(即今景德镇)的瓷窑建立,以其附近高岭村的优异瓷土为原料,烧制出的白瓷器,釉色纯正,含三氧化二铁少于1%,胎质含二氧化硅量接近80%,烧成温度高达1200℃,所以质地坚硬,透明度高,被誉为“假玉”。

宋代瓷器

宋代的名瓷、名窑呈现了百花齐放的局面。除固有的白瓷有了更大进步以外,河南钧窑瓷、浙江南宋修内司官窑的“开片瓷”及龙泉窑的青瓷则更具特色。钧瓷是一种天蓝或天青色乳浊釉瓷,而蓝釉中带红,有如晴空中出现晚霞。这种紫红色釉是以铜为着色剂,在高温还原气氛中烧成的。“开片瓷”则是有意地利用胎质与釉质的膨胀系数相差过于悬殊的特点而使在开窑的片刻釉面出现很多裂纹,再填以炭末,于是变病为美,别有风味。龙泉窑的青瓷有梅子青和粉青之分,颜色碧青、柔和淡雅,有如翠玉,达到了青瓷的高峰,说明配料、烧成温度和气氛的掌握已达到了完全纯熟的阶段。在釉下彩绘方面,磁州窑白釉的釉下黑彩、酱彩可作为代表。它是以四氧化三铁呈色的。

元代瓷器

元代瓷器的重大发展,主要反映在高温釉下彩绘上,出现了以钴土为呈色剂的青花瓷和以铜为呈色剂的釉里红瓷两个新品种,丰富了中国彩瓷的釉色。

明代瓷器

青花瓷在明代达到了成熟阶段,曾大量输出国外;而明代瓷器中更具特色的是上下釉彩争妍斗艳的斗彩瓷和单纯釉上彩绘的五彩瓷。这两种彩瓷的发明使以往占统治地位的单色釉和单色彩绘逐渐退居次要地位。这时出现的釉上彩绘的颜色釉料是以PbO-SiO-KO(黄丹-石英-硝石)为基体的低温釉料,其着色元素虽仅为铜、铁、钴、锰等几种,但选用不同的原料和配比,却做出了鲜红、鹅黄、杏黄、水绿、叶绿、孔雀蓝、葡萄紫等绚丽的彩色,使彩瓷达到了极其华丽的地步。明代单色釉也有重大创新,最珍贵的是永乐、宣德年间(1403—1435年)出现的“宝石红”、“霁红”等名称的铜红釉瓷。它采用一种高温石灰釉,以铜为着色剂,在强还原性气氛中烧成。红色是胶态单质铜的呈色作用产生的。其焙烧条件极为严格,可谓中国古瓷中的一项绝技。明代还有以铁着色的纯黄釉瓷和以铜为着色剂的孔雀绿瓷(法翠),前者采用低温铅釉,后者采用以牙硝代替黄丹的低温釉。

清代瓷器

清代康熙、雍正、乾隆三朝出现了中国制瓷工艺史上的黄金时代。彩釉、彩绘技术在清代得到了全面的高度发展,而且更出现了釉料掺砒的粉彩、立体感强的珐琅彩、釉下三彩、墨彩、乌金釉等新品种,同时也从国外引进了很多新技术,例如金彩、以胶态金呈色的胭脂红釉彩和以氧化锑呈色的黄彩。

汽水的历史

古罗马人对于喷泉和池塘中饱含二氧化碳的地下水带着泡沫和水花涌出地面的现象都很熟悉。这种喷泉里通常含有大量的矿物质,如镁和钙的碳酸盐类,并带有特殊的口味,当时一般人认为这是象征健康的味道。有些人还利用这种泉水治疗一些疾病。

虽然早期的化学家已明白泉水之所以异于普通水是因为其中含有某种气体,但他们并不知道是何种气体。直到1755年英国化学家布拉克用石灰石与酸反应时,才发现了二氧化碳气体。他认为二氧化碳是固定在石灰石中的,固称之为“固定空气”。

1772年,英国化学家普利斯特里从一家酿造厂得到了这种“固定空气”。他将打了洞的管子放入盛水的容器中,然后使“固定空气”通入水中。虽然有部分气体溢出,但是大部分被水吸收,因此制成了人工泉水。因它含有“固定空气”,故称为“汽水”。经过法国化学家拉瓦锡等人的研究,确认了“固定空气”就是二氧化碳。拉瓦锡还发明了制造汽水的机器。

1789年到1821年间,汽水陆续在欧美一些国家成为一种饮料。1808年,美国费城开药店的斯比格曼,按照拉瓦锡的方法制出汽水,在市场上出售,很受欢迎。此后,汽水配方又有了进一步发展,加入香料、糖和其他原料,在餐馆和药房里出售。有些药房出售的汽水中还含有当时属于合法的海洛因、可卡因和古柯碱等药物。

目前,各种汽水都含有某种形式的糖,一些汽水中还含有咖啡因。许多专家认为,汽水中含有大量的糖对牙齿有害;咖啡因与糖的共同作用,可能对某些儿童和成人造成过度兴奋的作用。

提出同位素假说的索迪

19世纪、20世纪之交发生的物理因此而生长出一批富有活力的新学科,促成了一系列新技术和新的实验手段的出现,揭开了现代自然科学的序幕,在这场伟大的科技革命中,一些化学家也建立了永载史册的业绩,居里夫人、索迪就是其中的代表。索迪于1910年提出了同位素假说,1913年发现了放射性元素的位移规律,为放射化学、核物理学这两门新学科的建立奠定了重要基础。因此荣获了1921年的诺贝尔化学奖。

元素蜕变假说的提出

1877年9月2日索迪生于英国伦敦一个商人家庭。少年时就立志将来作一位有成就的科学家,为此,从小学到大学他都努力学习,学习成绩年年优秀,还曾多次获得奖学金,1898年,他以荣获一级荣誉学位的优异成绩毕业于牛津大学。

1899年英国化学家克鲁克斯在分离铀矿物过程中,发现一部分铀具有放射性,另一部分铀却无放射性。其他一些科学家也发现了这一现象。同时还发现,钍、镭等放射性元素不仅能产生具有放射性的物质,而且还能使与它有接触的物质也产生放射性。这种放射性还会随着时间流逝而减弱,最后会消失。这些奇异的、当时无法解释的现象引起了当时正在加拿大蒙特利尔大学任实验物理学教授的卢瑟福的极大兴趣。他决定开展这一课题的研究,然而他觉得开展这项研究,必须为自己配备一个精通化学的实验助手。正当卢瑟福为自己寻找助手时,恰逢索迪到蒙特利尔大学访问。索迪一眼就被卢瑟福相中。就这样索迪刚出校门不久,就很幸运地成为卢瑟福的助手。事实已证明他们的合作是卓有成效的。

他们首先对钍的放射性做了大量的实验。他们将硝酸钍溶液用氨处理,沉淀出氢氧化钍,过滤后检查干燥的沉淀,其放射性显著降低,而将滤液蒸干除去硝酸铵后的残渣,却有极强的放射性、但过了一个月后,残渣的放射性消失,而钍却又恢复了原有的放射性。他们证实钍的放射性的确变化无常。他们还发现,如果把钍放在密闭的器皿中,其放射性强度较稳定,如果放在一个敞开的器皿中,其放射性强度就会变化不定,尤其容易受表面掠过的空气的影响。他们推测这可能是由于有某种物质放射出来,不久他们便证明这种被放射出来的物质是一种气体;他们称它为钍射气。

他们对有放射性的镭、锕进行实验研究,也发现存在同钍一样的现象。他们把镭放射出来的气体称为镭射气,锕放射出来的气体叫锕射气。根据这些实验结果,1902年卢瑟福、索迪提出元素蜕变假说:放射性是由于原子本身分裂或蜕变为另一种元素的原子而引起的。这与一般的化学反应不同,它不是原子间或分子间的变化,而是原子本身的自发变化,放射出α、β、γ射线,变成新的放射性元素。同时他们将这些实验结果和上述假说整理写成论文:“放射性的变化”。他们关于元素蜕变的假说一提出来,立即引起物理学界、化学界的强烈反对,因为认为一种元素的原子可以变成另一种元素的原子的观点,打破了长期以来认为元素的原子不能变的传统观念。周围的同事们也纷纷告诫他们,千万要小心,以免愚弄自己。开始时卢瑟福也有点犹豫,但是尊重实验事实的朴素唯物主义思想和科学家的责任感,促使卢瑟福和索迪勇敢地决定,一定要使论文发表。

他们将论文寄到当时在科学界颇有影响的《哲学杂志》时,遭到杂志主编开耳芬勋爵的拒绝。开耳芬勋爵是英国科学界的泰斗,19世纪最杰出的物理学家之一。在学术问题上开耳芬有一种观点,他认为实验仅是验证理论的一种方法。另外,晚年以思想保守而著称的开耳芬实际上是反对元素蜕变理论。卢瑟福和索迪在提出元素蜕变假说时,根据放射性元素在自发地发射射线的同时,还不断地放出能量这一事实,提出了“原子能”的概念。卢瑟福还用这理论说明太阳能和地热的来源,平息了物理学家和地质学家对此的长期争论。开耳芬则是物理学家的代表,主张这种能源来自引力收缩。开耳芬显然不愿意发表卢瑟福和索迪的论文。在这种情况下,卢瑟福只好赶回剑桥,求助于他的导师汤姆逊。通过实验测定了电子的荷质比,从而证实了电子的存在的汤姆逊,对新的科学发现和理论遭受白眼是很有感触的,因此他毫不迟疑地支持卢瑟福。汤姆逊亲自找到开耳芬,向开耳芬保证这篇文章由他负责,开耳芬才不得不同意刊登卢瑟福和索迪的论文。

同位素假说的提出

关于元素蜕变假说的论文的发表,引起的轰动是可想而知的。起初,甚至连居里夫妇也表示不能轻易相信。门捷列夫则不但自己表示怀疑,还号召其他科学家不要相信。至于开耳芬,尽管同意发表了这篇论文,他还是在1906年和1907年英国科学促进协会的两次年会上一再发起挑战,认为镭产生新元素并不能证明原子的蜕变,而可能镭本身就含有该元素的化合物。卢瑟福、索迪、居里夫人都对开耳芬进行了反驳,而最有力的反驳莫过于实验事实。在提出元素蜕变假说后,卢瑟福、素迪开始了对放射性元素的进一步深入研究。

1899年卢瑟福曾发现铀和铀的化合物所发出的射线有两种,一种极易被吸收、他命名为α射线:另一种有较强的穿透本领,他称之为β射线。为了探索α、β射线的本质,卢瑟福和索迪利用空气液化机在低温条件下浓缩射气,证明射气是一种气体,这气体与拉姆塞曾发现的惰性气体很相像。继续研究时,他们又发现镭衰变时放射出氦离子,于是他们推测α射线就是氦离子流。为了验证这一推测,1903年3月索迪离开了卢瑟福实验室,回到伦敦,和以发现和研究惰性气体商闻名于世的拉姆塞合作,研究放射性镭所放射的气体。不久他们的实验就确认了卢瑟福和索迪的上述推测,α射线就是带正电荷的氦离子流。卢瑟福则证明该射线就是电子流。他们的共同努力,终于揭示了放射线的本质。