秦九韶是南宋时期官员、数学家,与李冶、杨辉、朱世杰并称“宋元数学四大家”。他精研星象、算术、营造之学,完成著作《数书九章》,取得了具有世界意义的重要贡献。
秦九韶最重要的数学成就是“大衍总数术”,即一次同余组解法,还有“正负开方术”,即高次方程数值解法。
秦九韶的成就代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。
在楚汉战争中,有一次,刘邦手下大将韩信与楚王项羽手下大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。
就在汉军行至一山坡时,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。
韩信兵马到坡顶,见来敌不足500骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。
韩信马上向将士们宣布:我军有1073名勇士,敌人不足500人,我们居高临下,以众击寡,一定能打败敌人。
汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”,于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。
交战不久,楚军果然大败,落荒而逃。
在这个故事中,韩信能迅速算出有1073名勇士,其实是运用了一个数学原理。他3次排兵布阵,按照数学语言来说就是:一个数除以3余2,除以5余3,除以7余2,求这个数。
对于这类问题的有解条件和解的方法,是由宋代数学家秦九韶首先提出来的,被后世称为“中国剩余定理”。
秦九韶是一位非常聪明的人,处处留心,好学不倦。通过这一阶段的学习,他成为一位学识渊博、多才多艺的青年学者。时人说他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知”。
秦九韶考中进士以后,先后担任了县尉、通判、参议官、州守、同农、寺丞等官职。他在政务之余,对数学进行潜心钻研,并广泛收集历学、数学、星象、音律、营造等资料,进行分析、研究。
秦九韶在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名于世的巨著《数书九章》。全书共列算题81问,分为9类,每类9个问题,不但在数量上取胜,重要的是在质量上也是拔尖的。
《数书九章》的内容主要有:大衍类,包括一次同余式组解法;天时类,包括历法计算、降水量;田域类,包括土地面积;测望类,包括勾股、重差;赋役类,包括均输、税收;钱谷类,包括粮谷转运、仓窖容积;营建类,包括建筑、施工;军族类,包括营盘布置、军需供应;市物类,包括交易和利息。
《数书九章》系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“三斜求积术”和“大衍求一术”等,达到了当时世界数学的最高水平。
秦九韶的正负方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。
秦九韶所论的“正负开方术”,被称为“秦九韶程序”。世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。
此项成果是中世纪世界数学的最高成就,比1819年英国人霍纳的同样解法早五六百年。
秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时它又给出了筹算的草式,可使它扩充到一般线性方程中的解法。
在欧洲最早是1559年法国布丢给出的,比秦九韶晚了300多年。布丢用不很完整的加减消元法解一次方程组,而且理论上的完整性也逊于秦九韶。
我国古代求解一类大衍问题的方法。秦九韶对此类问题的解法作了系统的论述,并称之为“大衍求一术”,即现代数论中一次同余式组解法。
这一成就是中世纪世界数学的最高成就,比西方1801年著名数学家高斯建立的同余理论早500多年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无上荣誉,也为世界数学作出了杰出贡献。
秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式。还给出一些经验常数,如筑土问题中的“坚三穿四壤五,粟率五十,墙法半之”等,即使对现在仍有现实意义。
秦九韶还在“推计互易”中给出了配分比例和连锁比例的混合命题的巧妙且一般的运算方法,至今仍有意义。
《数书九章》是对我国古典数学奠基之作《九章算术》的继承和发展,概括了宋元时期我国传统数学的主要成就,标志着我国古代数学的高峰。其中的“正负开方术”和“大衍求一术”长期以来影响着我国数学的研究方向。秦九韶的成就代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。
德国著名数学史家、集合论的创始人格奥尔格·康托尔高度评价了“大衍求一术”,他称赞发现这一算法的中国数学家秦九韶是“最幸运的天才”。美国著名科学史家萨顿说道:
秦九韶是他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一。
秦九韶,中华民族的骄傲!