书城公版Metaphysics
26100900000098

第98章

Similarly also the objects of optics and of harmonics will exist apart; for there will be both voice and sight besides the sensible or individual voices and sights. Therefore it is plain that the other senses as well, and the other objects of sense, will exist apart; for why should one set of them do so and another not? And if this is so, there will also be animals existing apart, since there will be senses.

Again, there are certain mathematical theorems that are universal, extending beyond these substances. Here then we shall have another intermediate substance separate both from the Ideas and from the intermediates,-a substance which is neither number nor points nor spatial magnitude nor time. And if this is impossible, plainly it is also impossible that the former entities should exist separate from sensible things.

And, in general, conclusion contrary alike to the truth and to the usual views follow, if one is to suppose the objects of mathematics to exist thus as separate entities. For because they exist thus they must be prior to sensible spatial magnitudes, but in truth they must be posterior; for the incomplete spatial magnitude is in the order of generation prior, but in the order of substance posterior, as the lifeless is to the living.

Again, by virtue of what, and when, will mathematical magnitudes be one? For things in our perceptible world are one in virtue of soul, or of a part of soul, or of something else that is reasonable enough; when these are not present, the thing is a plurality, and splits up into parts. But in the case of the subjects of mathematics, which are divisible and are quantities, what is the cause of their being one and holding together?

Again, the modes of generation of the objects of mathematics show that we are right. For the dimension first generated is length, then comes breadth, lastly depth, and the process is complete. If, then, that which is posterior in the order of generation is prior in the order of substantiality, the solid will be prior to the plane and the line. And in this way also it is both more complete and more whole, because it can become animate. How, on the other hand, could a line or a plane be animate? The supposition passes the power of our senses.

Again, the solid is a sort of substance; for it already has in a sense completeness. But how can lines be substances? Neither as a form or shape, as the soul perhaps is, nor as matter, like the solid; for we have no experience of anything that can be put together out of lines or planes or points, while if these had been a sort of material substance, we should have observed things which could be put together out of them.

Grant, then, that they are prior in definition. Still not all things that are prior in definition are also prior in substantiality. For those things are prior in substantiality which when separated from other things surpass them in the power of independent existence, but things are prior in definition to those whose definitions are compounded out of their definitions; and these two properties are not coextensive. For if attributes do not exist apart from the substances (e.g. a 'mobile' or a pale'), pale is prior to the pale man in definition, but not in substantiality. For it cannot exist separately, but is always along with the concrete thing; and by the concrete thing I mean the pale man. Therefore it is plain that neither is the result of abstraction prior nor that which is produced by adding determinants posterior; for it is by adding a determinant to pale that we speak of the pale man.

It has, then, been sufficiently pointed out that the objects of mathematics are not substances in a higher degree than bodies are, and that they are not prior to sensibles in being, but only in definition, and that they cannot exist somewhere apart. But since it was not possible for them to exist in sensibles either, it is plain that they either do not exist at all or exist in a special sense and therefore do not 'exist' without qualification. For 'exist' has many senses.

3

For just as the universal propositions of mathematics deal not with objects which exist separately, apart from extended magnitudes and from numbers, but with magnitudes and numbers, not however qua such as to have magnitude or to be divisible, clearly it is possible that there should also be both propositions and demonstrations about sensible magnitudes, not however qua sensible but qua possessed of certain definite qualities. For as there are many propositions about things merely considered as in motion, apart from what each such thing is and from their accidents, and as it is not therefore necessary that there should be either a mobile separate from sensibles, or a distinct mobile entity in the sensibles, so too in the case of mobiles there will be propositions and sciences, which treat them however not qua mobile but only qua bodies, or again only qua planes, or only qua lines, or qua divisibles, or qua indivisibles having position, or only qua indivisibles. Thus since it is true to say without qualification that not only things which are separable but also things which are inseparable exist (for instance, that mobiles exist), it is true also to say without qualification that the objects of mathematics exist, and with the character ascribed to them by mathematicians.