书城公版South American Geology
26200300000153

第153章 NORTHERN CHILE.CONCLUSION(23)

Author's "Journal" 2nd edition page 359.)Ascending to the older tertiary formations, I will not again recapitulate the remarks already given at the end of the Fifth Chapter,--on their great extent, especially along the shores of the Atlantic--on their antiquity, perhaps corresponding with that of the eocene deposits of Europe,--on the almost entire dissimilarity, though the formations are apparently contemporaneous, of the fossils from the eastern and western coasts, as is likewise the case, even in a still more marked degree, with the shells now living in these opposite though approximate seas,--on the climate of this period not having been more tropical than what might have been expected from the latitudes of the places under which the deposits occur; a circumstance rendered well worthy of notice, from the contrast with what is known to have been the case during the older tertiary periods of Europe, and likewise from the fact of the southern hemisphere having suffered at a much later period, apparently at the same time with the northern hemisphere, a colder or more equable temperature, as shown by the zones formerly affected by ice-action.Nor will I recapitulate the proofs of the bottom of the sea, both on the eastern and western coast, having subsided seven or eight hundred feet during this tertiary period; the movement having apparently been co-extensive, or nearly co-extensive, with the deposits of this age.Nor will I again give the facts and reasoning on which the proposition was founded, that when the bed of the sea is either stationary or rising, circumstances are far less favourable than when its level is sinking, to the accumulation of conchiferous deposits of sufficient thickness, extension, and hardness to resist, when upheaved, the ordinary vast amount of denudation.We have seen that the highly remarkable fact of the absence of any EXTENSIVE formations containing recent shells, either on the eastern or western coasts of the continent,--though these coasts now abound with living mollusca,--though they are, and apparently have always been, as favourable for the deposition of sediment as they were when the tertiary formations were copiously deposited,--and though they have been upheaved to an amount quite sufficient to bring up strata from the depths the most fertile for animal life--can be explained in accordance with the above proposition.As a deduction, it was also attempted to be shown, first, that the want of close sequence in the fossils of successive formations, and of successive stages in the same formation, would follow from the improbability of the same area continuing slowly to subside from one whole period to another, or even during a single entire period; and secondly, that certain epochs having been favourable at distant points, in the same quarter of the world for the synchronous accumulation of fossiliferous strata, would follow from movements of subsidence having apparently, like those of elevation, contemporaneously affected very large areas.

There is another point which deserves some notice, namely, the analogy between the upper parts of the Patagonian tertiary formation, as well as of the upper possibly contemporaneous beds at Chiloe and Concepcion, with the great gypseous formation of Cordillera; for in both formations, the rocks, in their fusible nature, in their containing gypsum, and in many other characters, show a connection, either intimate or remote, with volcanic action; and as the strata in both were accumulated during subsidence, it appears at first natural to connect this sinking movement with a state of high activity in the neighbouring volcanoes.During the cretaceo-oolitic period this certainly appears to have been the case at the Puente del Inca, judging from the number of intercalated lava-streams in the lower 3,000feet of strata; but generally, the volcanic orifices seem at this time to have existed as submarine solfataras, and were certainly quiescent compared with their state during the accumulation of the porphyritic conglomerate formation.During the deposition of the tertiary strata we know that at S.

Cruz, deluges of basaltic lava were poured forth; but as these lie in the upper part of the series, it is possible that the subsidence may at that time have ceased: at Chiloe, I was unable to ascertain to what part of the series the pile of lavas belonged.The Uspallata tuffs and great streams of submarine lavas, were probably intermediate in age between the cretaceo-oolitic and older tertiary formations, and we know from the buried trees that there was a great subsidence during their accumulation; but even in this case, the subsidence may not have been strictly contemporaneous with the great volcanic eruptions, for we must believe in at least one intercalated period of elevation, during which the ground was upraised on which the now buried trees grew.I have been led to make these remarks, and to throw some doubt on the strict contemporaneousness of high volcanic activity and movements of subsidence, from the conviction impressed on my mind by the study of coral formations, that these two actions do not generally go on synchronously;--on the contrary, that in volcanic districts, subsidence ceases as soon as the orifices burst forth into renewed action, and only recommences when they again have become dormant.

("The Structure and Distribution of Coral Reefs.")At a later period, the Pampean mud, of estuary origin, was deposited over a wide area,--in one district conformably on the underlying old tertiary strata, and in another district unconformably on them, after their upheaval and denudation.During and before the accumulation, however, of these old tertiary strata, and, therefore, at a very remote period, sediment, strikingly resembling that of the Pampas, was deposited; showing during how long a time in this case the same agencies were at work in the same area.