足印的发现地点在湖底,科研人员可以利用那里的岩石层,确认足印的“年龄”。几个主要的爬行动物群体的足印在三叠纪(2.02亿年前)时还大量存在,但在更年轻的侏罗纪却不见了。
华盛顿大学地质学教授彼得·D·沃得说:“我认为足印方法很新鲜,很令人激动。我们得到的数据非常有意义。”
在这些地方发现的化石还表明,距今2亿年前大多数植物死亡了,蕨类植物却忽然繁盛起来。与此类似的是,恐龙在距今6500万年前灭绝后,蕨类植物也曾盛极一时。
不知道看过恐龙王朝的兴衰之后,你有没有这样的感觉:宇宙的一切安排都是公平而合理的,既然赐予你的生命,同样也不可避免地可以宣布消失的判决。
黑洞不是洞
“黑洞”很容易让人望文生义地想像成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其他方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!
“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。
超新星——天外飞仙
在晴朗无月的夜晚,当你抬头仰望那漫无边际的星空时,如果你注意到在以前没有星星的地方,突然冒出一颗明亮无比的星,在它面前,著名的天狼星变得暗淡无光,耀眼的“太白金星”也不能与之匹敌,甚至太阳的光辉也不能将之压倒,那么你所见到的那颗星就是一颗超新星。
说到这里,大家也许会纳闷:平白无故怎么会突然多出一个叫做“超新星”的星呢?这是怎么回事?其实,超新星并不是新生成的恒星,它们是原本早就存在的恒星。要想弄清什么是超新星,首先我们要先知道什么是新星。
在整个宇宙背景很暗的情况下,有些星星我们用肉眼是根本看不到的,甚至用一些大的望远镜都看不见。由于某种原因,这种恒星突然产生了爆炸,亮度一下子增长了上万倍,随后又逐渐变暗,这种星星,叫做新星。
其中,我们把那些爆炸时亮度超群出众的,就称为“超新星”。
故事讲到这儿,大家也许又会问,超新星既然是恒星爆炸时形成的,那么恒星为什么会爆炸呢?
为了解决这个问题,我们需要大致了解一下恒星的演化过程。大家都知道,一个人总要经历诞生、成长、衰老直至寿终的整个一生。同样,自然界的动物、植物也是如此。那么,天上的星星又怎么样呢?也不例外。它们也要经过从生到死的过程。具体可以分为“早期形成”阶段、“中午”阶段和“晚年”阶段。所谓“早期”是指恒星开始形成的时候,“中年”指恒星相对稳定的时期。我们每天所见的太阳目前就处于“中午”阶段,所以它的光度基本不变。而当恒星迈入“晚年”阶段后,它就处于一种很不稳定的状态。是什么原因造成了这种结构的不稳定呢?许多科学家对此进行了猜测和设想。有人认为进入晚年的恒星,就像一个物体由于内外受力不平衡,晚年恒星就会被迫改变形状。由于星星要发光,它就必须消耗自身的能量。当它内部“燃料”逐渐被消耗时,它所能利用的也就越来越少,这就使得恒星向外放出的能量大大减少,这一下可不得了,本来向外的压力和向内的引力是平衡的,而这时向外的压力大大减少,巨大的引力因此而失去抗衡,就像房屋突然断了横梁和支柱一样,就会向中心猛然“坍缩”下去。结果,中心区域的物质被挤压得十分厉害,于是从恒星内部放出巨大的能量。一种被称作“中微子”的粒子流,就像超级飓风一样把恒星摧毁。而这个过程所需要的时间非常的短,不到一秒钟,瞬时温度可高达万亿K。很难想像这个过程是如此迅猛,放出的能量如此之大,于是,我们就看到了它突然变亮的过程。这就是超新星爆炸的原因和过程。
这里,我们可以看看历史上一颗典型的超新星的形成过程。
北宋的时候,也就是公元1054年的一天早上,东方天空中的天关星附近突然出现了一颗非常亮的星星。它光芒四射,白天看起来就像整个天空里最亮的金星一样亮。它持续了23天才开始变暗,但肉眼仍能看到。一直过了大约两年的时间,它才消失了。宋朝的天文学家们称它为“客星”。不像吗?莫名其妙地出现在天空,又莫名其妙地走了,不恰似一位太空“游客”,来也匆匆,去也匆匆吗?大约在七百年以后,也就是18世纪,有个英国人用望远镜观测天空的时候,在“客星”出现的位置出现了一团很模糊的气体云,样子很像一只张牙舞爪的大螃蟹。于是人们就给它起了一个绰号叫“蟹状星云”。后来,经过天文学家考证:“客星”就是超新星爆发,而“蟹状星云”正是超新星爆发后遗留下来的物质。现在所有活在世上的人当中都没有见到过它,只有在历史的记载上还珍藏着它的一些简略的史料。现在,在我们银河系里能完全肯定为超新星的“事件”的只有几起,其中之一就是宋史上记载的1054“客星”。
提起1054“客星”或“蟹状星云’,就会激起中国天文学家们的自豪感。1054超新星是我国古代关于超新星爆发的记录,是全世界最丰富和最准确的记录。而最近,我们国家的天文学家们在这方面又取得了一些新的进展:北京天文台李卫东博士分别于1996年4月11日和1996年10月18日发现了两颗银河系外的超新星,他也是在这方面取得进展的中国第一位天文学家。这两颗星分别命名为SNl996W,SNl996Bo,其中SNl996W是1996年国内外发现的最亮的一颗,因此显得更有价值,更有历史意义,在当代天文学的发展史上为中国人又添上了光辉的一笔。
关于超新星这个地球的“天外飞仙”,人们已经发现了许多,但对它形成的原因,却仍然处于猜想阶段。究竟是什么原因使晚年的恒星产生了大爆炸,这还是一个没有得出答案的谜。