关于查尔斯·达尔文的“物种起源”理论具有讽刺意味的事实之一是:虽然该理论提供了充足的证据,证明新物种由已有物种进化而来,但并未告诉我们这是如何发生的。不难发现自然选择能导致某个物种随时间变化,但单一物种为何分裂成进化树上的两个完全不同的分支却不是那么清楚。假如某一外部改变使某个种群的成员较其他种群的成员更容易存活,那么毫无疑问,这一改变会使整个物种向那个方向进化。两个单独的物种如何能源自一个物种?
物种形成是个复杂的事情,发生的规模和所需时间完全不同。没有理由认为,它仅由一种力量控制——毕竟我们知道,与基因突变和现有基因重组相关的还有环境影响、资源衰竭、寄生虫、迁移和疾病。因此,虽然科学家提出了很多理论和观点来说明物种形成的原因,但它仍然是生物学上的最大难题之一。
在围绕这一难题的一系列行动中,有两个非常引人注目的趋势。一个是,把关注的焦点从认为物种形成是重大的环境和地理改变的直接结果这样一些理论移开;新焦点认为物种形成发生在无任何剧烈改变的情况下,即发生在处于几乎相同的环境中,而且是非常相似的生物的某一杂种繁殖种群中。
另一个趋势是:研究者越来越多地利用数学模型。该方法更常用于探究物理问题。研究人员利用这些模型描述物种形成的自然动态。而且,当把数学模型应用到“非剧烈的”物种形成的情形中时,它们产生了一些非常有趣的结果。
数学运算显示,物种形成远非一个令人吃惊的现象,如果不出现这一现象倒非常奇怪了。导致这一结果的过程似乎与使宇宙充满物质以及产生亚原子粒子、行星、沙丘,还有最后产生人类的过程完全相同。看起来似乎不可思议,但中子、独角鲸、电子和大象的不同特点在某种程度上都要归因于一个决定物质世界中大量现象的原理。
物理学家和数学家通常称该原理为“对称破裂”。一个例子是沙丘的形成。简化为理想的数学模型:一股始终不变的风吹过一处始终不变的沙漠将产生平行的沙脊。没有特色的沙漠具有平面的所有对称性:旋转任意角度,看起来都是一样的。但是,风降低了对称程度:平行的沙脊把一个明确的方向引入景观。
这种对称破裂自然地发生在任何地方。例如,假如你从底部均匀加热一个盛有液体的平盘,那么在某一临界温度,会出现一个复杂的对流单体图案,将一致性打破。对流单体一般为六边形,还有少量为五边形,而且它们大小几乎相同。如同沙丘的情况一样,在这个例子中,对称被打破,变成一个大致为六边形格子的对称。
然而,对称破裂与物种形成有什么关系呢?虽然对有性种群中的“同一物种”的最常见定义是“能够杂交繁殖”,但是生物学家一段时间以来一直在寻找另外一个定义取而代之,因为在大多数的情况下,这一定义不合适。
生物学家没有寻找对物种的一个正式定义,而是回到更加直觉的观点,即如果生物体实际上无法区分,那么就属于同一物种。相似的程度可以通过列出解剖和行为特征,然后观察二者有多匹配来量化。这时就牵扯到对称性了。
一个物体或系统的对称性就是保持其结构的一种变形。就物种形成而言,变形是重新排列,即改组模型中使用的标签来识别个体生物。
根据这一观点,对某个物种的定义就是它是对称的,物种形成就是对称破裂的一种形式。有了这一定义,数学家和物理学家就能应用现有的对称破裂原理。该原理描述了特定的一个对称群体一般如何、为何和何时分裂为亚群——在这里指物种。
那么造成最初分裂的原因是什么呢?我们有关物理学中对称破裂的知识显示,关键的一步是种群中出现某种不稳定性。物理学中的一个例子是,用越来越大的力量弯曲一根棍子,某件东西突然屈服了——棍子断成两截。为什么?因为断成两截是个稳定的状态,而一根受到过大应力的棍子是不稳定的。对称性迅速丧失,而且是不可逆的。
物种形成的对称破裂模型确实显示,不稳定性可以是一个触发因素。确切地说,假如小的形状或行为改变一般能在后代中减弱,那么就能称一个物种“稳定”。假如因为新生代改组亲代的基因,自然选择又抛弃运转不那么良好的基因组合,这些改变变得失控,那么物种就是不稳定的。
我们至少可以说,对称破裂方法使我们对整个问题有了新的看法。物种因为不可控制地丧失稳定性而发生演变。事件发生的实际顺序——哪一个基因做了什么,以及以什么顺序——决定对该稳定性丧失的具体反应,不过这取决于令人困惑的各种偶然因素,比如哪些鸟的喙较大、哪些鸟的喙较小。概括地说,此类细节不如总的环境重要。它们看起来似乎是物种形成的原因,但实际上,只是影响深远的不稳定性的结果。一个受到过大应力的棍子必定断裂。
一个受到过大应力的鸟群,要么必定形成新的物种,要么必定消亡。物种形成并不令人吃惊,它只是世界运转的方式。